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Abstract

In this paper a study of the self-excited stick–slip oscillations of a rotary drilling system with a drag bit, using a discrete

model that takes into consideration the axial and torsional vibration modes of the system, is described. Coupling between

these two vibration modes takes place through a bit–rock interaction law, which accounts for both the frictional contact

and the cutting processes. The cutting process introduces a delay in the equations of motion that is responsible for the

existence of self-excited vibrations, which can degenerate into stick–slip oscillations and/or bit bouncing under certain

conditions. From analysis of this new model it is concluded that the experimentally observed decrease of the reacting

torque with the angular velocity is actually an expression of the system response, rather than an intrinsic rate dependence

of the interface laws between the rock and the drill bit, as is commonly assumed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rotary drilling systems used to drill deep boreholes for hydrocarbon exploration and production often
experience severe torsional vibrations, called stick–slip, characterized by (i) sticking phases where the bit stops,
and (ii) slipping phases where the angular velocity of the tool O increases up to two times the imposed angular
velocity. This problem is particularly acute with drag bits, which consist of fixed blades or cutters mounted on
the surface of a bit body.

The stick–slip phenomenon has been the subject of intensive research in various fields of mechanics [1,2],
ranging from the triggering of earthquakes [3–5] to the squealing of brakes [6]. It is usually assumed that the
cause of stick–slip lies within the constitutive properties of the frictional interface, and in particular through
the dependence of the coefficient of friction m on the relative velocity ½v� between the two contacting surfaces.
In fact, stick–slip oscillations are classically modeled on the basis of a friction coefficient decreasing with ½v�, as
observed in some experiments [7–9]. Indeed, a sufficient condition to trigger instability of steady sliding is
simply qm=q½v�o0 in the neighborhood of the trivial solution [10]. Due to this velocity-weakening property, the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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frictional force acts as a negative damping and is responsible for the growth of instabilities leading eventually
to stick–slip oscillations.

Field and laboratory drilling experiments often also exhibit a monotonic decrease of the mean torque hTi
(averaged over several bit revolutions) with the imposed angular velocity Oo, under constant weight-on-bit
[11,12]. These experimental observations have served as a basis for analyzing stick–slip torsional oscillations of
drag bits using a torsional model of the drillstring with a velocity-weakening bit–rock interface [13–16].
However, the central question that has to be addressed in modeling this class of problems is whether the
observed decrease of the torque with the angular velocity is an intrinsic property of the interface between the
bit and the rock, or rather an apparent property that reflects not only the interface but also the drilling system.

Outside the particular problem of drilling, there are examples of stick–slip phenomena that can also be
explained by a coupling at the frictional interface between two modes of vibrations. For example, elastic
contact normal to the frictional interface has been invoked to model the stick–slip phenomenon [17–19], based
on experiments showing that sliding events were accompanied by motion in the normal direction [20].
Moreover, a decrease of the apparent friction coefficient is predicted with increasing relative velocity during
stick–slip oscillations [17]. The stability of surface waves along an interface characterized by a constant friction
coefficient has also been studied [21–24]. The steady solutions are shown to be unstable, with the perturbed
motion eventually reaching a periodic state with regions of stick and regions of slip. The coupling between the
normal and the tangential displacement at the interface is the primary cause of stick–slip oscillations, with the
presence of stick–slip waves causing an apparent decrease of the coefficient of friction [24].

The motivation to challenge the classical approach in the context of drilling vibrations involving drag bits
stems from several observations. First, a comprehensive analysis of published laboratory data (see Appendix
A) within the framework of a bit–rock interface model [25] does not support the existence of a rate-dependent
bit–rock interface law. Furthermore, rate effects taking place over a time scale much smaller than the period of
stick–slip (which varies typically from 1 to 3 s or equivalently from 0.5 to 10 revolutions) would need to be
assumed, in order to model stick–slip oscillations provoked by a velocity-weakening law. However, there is no
evidence that this effect is a constitutive property of the bit–rock interface and furthermore that it exists at
time scales much smaller than the time for one revolution of the bit.

Based on the analysis of chattering in metal machining [26–29], the history dependent nature of the bit–rock
interface has been proposed as possible cause of axial self-excited vibrations [30–35]. In this approach, the
axial vibrations are sustained by the regenerative effect associated with drilling; namely the thickness of rock
removed by a cutter is affected by the path of the cutter ahead. Self-excited torsional vibrations via coupling
with the axial mode through the cutting process at the bit–rock interface have also been considered [33], but
with the analysis limited to the effect of the torsional mode on the stability of the axial mode.

In this paper, we propose an alternative approach based on a discrete model of the drilling system, and on a
rate-independent description of the bit–rock interaction. This model takes into consideration the axial and
torsional vibration modes and their coupling through bit–rock interaction laws, which account for both
frictional contact and cutting processes at the bit–rock interface. We show that this model experiences self-
excited vibrations, which can degenerate into stick–slip oscillations or bit bouncing under certain conditions.
Furthermore, from our analysis we observe that the decrease of the torque with the bit angular velocity is the
consequence of a reduced description of the physical system, rather than the cause of the self-excitations.

2. Mathematical formulation

In this section, we describe a simplified model to study the self-excited axial-torsional vibrations of a drilling
system. First, we discuss a reduced two degrees of freedom system and the justification for this particular
discrete model. Then we focus on the characterization of a rate-independent bit–rock interface law, starting
with the interaction between a single cutter and a rock. The interaction law accounts both for cutting of the
rock and for frictional contact on the cutter wearflat. The cutting forces are formulated in terms of the depth
of cut, a variable which brings into the equations the position of the bit at a previous a priori unknown time.
Combining the equations governing the discrete system with the interface law leads to the formulation of a
novel state-dependent delay dynamical system, with discontinuous boundary conditions that reflects loss of
contact at the wearflat/rock interface caused by small amplitude axial vibrations of the bit.



ARTICLE IN PRESS
T. Richard et al. / Journal of Sound and Vibration 305 (2007) 432–456434
2.1. Model of the drilling system

A rotary drilling structure consists essentially of a rig, a drill string, and a bit. The principal components of
the drill string are the bottom hole assembly (BHA) composed mainly of heavy steel tubes to provide a large
downward force on the bit, and a set of drillpipes made of thinner tubes. For the idealized drilling system
under consideration, we assume: (i) that the boundary conditions applied by the rig to the top of the drillstring
correspond to a constant upward force Ho and a constant angular velocity Oo, (ii) that the borehole is vertical,
and (iii) that there are no lateral motions of the bit. The nature of the boundary conditions at the bit–rock
interface is a critical aspect of the model and is discussed in details below.

The bit motion as well as the forces acting on the bit can in principle be calculated knowing the prescribed
surface boundary conditions, the mechanical properties of the drill string and the bit–rock interaction law. For
this analysis, we consider a discrete model of the drilling system characterized by only two degrees of freedom,
U and F, corresponding to the vertical and angular position of the bit, respectively, and by three mechanical
elements, namely a point mass M, a moment of inertia I and a spring of torsional stiffness C, see Fig. 1. The
mass M and the moment of inertia I are taken to represent the BHA, while the spring C is assumed to stand
for the torsional stiffness of the drillpipe. However, I is corrected to account for the inertia of the drillpipes, in
order to improve the estimate of the period of free torsional vibrations [36]. Expressions for M, I , and C are
readily obtained by assuming that both the drillpipes and the BHA correspond to continuous shafts with
constant cross-section and density r

M ¼ rpðr2bo � r2biÞLb; I ¼ rJbLb þ
1

3
rJpLp; C ¼

GJp

Lp

, (1)

with

Jp ¼
p
2
ðr4po � r4piÞ; Jb ¼

p
2
ðr4bo � r4biÞ

and with rpi (rbi), rpo (rbo), Lp (Lb), Jp (Jb) denoting, respectively, the inner radius, outer radius, length, and
polar moment of inertia of the drillpipe (bottom hole assembly).

Reduction of the continuous system, consisting of drillpipes and the bottom hole assembly, to a two degrees
of freedom system is motivated by the need to define a reasonable yet tractable model to assess the
consequence of the nature of the boundary conditions at the bit–rock interface. Nonetheless, these
simplifications are in part substantiated by field measurements indicating that the torsional oscillations of the
Fig. 1. Sketch of a simplified model of the drilling system.
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drill bit are dominated by the first mode of vibrations of the drilling system. In fact, these field observations
have often justified the reduction of the drilling system to a torsional pendulum [37]. We have also chosen to
neglect any damping of the system as most of the energy dissipation in drilling systems is taking place at the
bit–rock interface; this dissipation is accounted for by the bit–rock interaction laws discussed below.

The asymmetry in the axial and torsional description of the reduced system stems from the different nature
of the two boundary conditions at the rig: ‘‘fixed’’ in rotation (i.e., imposed angular position Oot), and ‘‘free’’
in translation (i.e., imposed constant axial force Ho). These boundary conditions at the top of the drill string
imply that the axial stiffness of the pipes can be disregarded in this particular discrete model. Despite
neglecting the axial stiffness, non-trivial axial motions of the bit arise from the coupling between the two
vibration modes through the bit–rock interaction.

Given the constant angular velocity Oo and constant upward tension Ho imposed to the upper end of the
torsional spring, we seek to determine the unknown bit response RðtÞ ¼ fW ðtÞ;V ðtÞ;TðtÞ;OðtÞg. This response,
which is generally a function of time t, consists of two sets of conjugated dynamical and kinematical
quantities: the weight-on-bit W and the vertical bit velocity V ¼ dU=dt (also called rate of penetration) on the
one hand, and the torque-on-bit T and the angular bit velocity O ¼ dF=dt on the other hand. (Refer to Fig. 1
for the sign convention adopted for these quantities.)

2.2. Bit– rock interface

As an introduction to the formulation of the bit–rock interface laws, we first consider the forces acting on a
single cutter, which is steadily removing rock over a constant depth, as illustrated in Fig. 2. The action of such
a tool generally consists of two independent processes [25]: (i) a pure cutting process taking place ahead of the
cutting face, and (ii) a frictional contact process mobilized along the interface between the wearflat and the
rock. The force F on the cutter results therefore from the superposition of two forces Fc and Ff , acting on the
cutting face and on the wearflat, respectively. Provided that these forces are averaged over a distance equal to
at least a few times the depth of cut, Fc and Ff can be treated as being steady [25,38], and thus only four
parameters are needed to characterize their magnitude and inclination. The components of these two forces in
a direction parallel (subscript s) and perpendicular (subscript n) to the cutter motion, i.e., Fc ¼ ðF cs;FcnÞ

T,
Ff ¼ ðFfs;FfnÞ

T, can be expressed as (see Fig. 2)

Fcs ¼ �wd; F cn ¼ zF cs; F fs ¼ mF fn; F fn ¼ sw‘, (2)

where � is the intrinsic specific energy, a parameter related to the rock strength under certain conditions [39], z
is a number characterizing the orientation of the cutting force Fc, m is a coefficient of friction that is well
correlated to the internal friction angle of the rock [40–42] , and s is the maximum contact pressure at the
wearflat/rock interface, a parameter which is of the same order as � [40,41]. The expressions for Fcs and Ffn in
Eq. (2) are specific for a constant cutter width w, but they hold more generally provided that wd is replaced by
the cross-sectional area of the groove traced by the cutter and w‘ by the wearflat area, with d denoting the
depth of cut and ‘ the length of the wearflat.

The presence of a contact surface between the rock and the cutter, subparallel to the average direction of
cutter motion, has significant implications in regard to the variation of the force acting on the cutter, caused
by a perturbation in the direction of cutter velocity v. We consider a perturbation in the form of a velocity
Fig. 2. Sketch of the repartition of the forces acting on a single cutter.
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component vn (small compared to vs) which is superimposed on the initial velocity vs. If vno0 (leading to a
decreasing depth of cut), there is a momentary loss of contact at the wearflat interface that is associated with a
discontinuous force response as F becomes suddenly equal to Fc. If vn40, the force on the cutter will increase
monotonically in view of the dependence of the magnitude of the cutting force on the depth of cut (with the
force Ff remaining virtually unchanged). We will also interpret the expression for Ffn in Eq. (2) to imply that
the cutter is only in frictional contact with the rock (i.e. d ¼ 0) if Fnosw‘. In reality, some cutting is taking
place when Fnosw‘ but how much rock is removed depends on how the wearflat is in conforming contact
with the rock.

These concepts can be extended to model the generalized forces acting on a drill bit by integrating the effects
of all the individual cutters [25]. The torque T and weight-on-bit W can also be decomposed into a
contribution associated to the forces transmitted by the cutting face of each cutter (denoted by the subscript c)
and another corresponding to the forces acting on the cutter wearflats (denoted by the subscript f )

T ¼ Tc þ Tf ; W ¼W c þW f . (3)

The cutting components of the torque Tc and weight W c can be written as

Tc ¼
1
2
� a2d; W c ¼ z� a d, (4)

while the torque Tf and weight-on-bit W f are related according to

2Tf ¼ magW f . (5)

In the above equations, a denotes the bit radius and g is a bit geometry number (greater than 1) that
characterizes the orientation and spatial distribution of the frictional contact surfaces associated with the
cutters.

The expressions in Eq. (4) for Tc and W c, which echo the expressions in Eq. (2) for the forces Fcs and Fcn on
a single cutter, are assumed to be valid at any moment as the averaging of the forces fluctuations on all the
cutters of the bit has the same effect as the averaging over distance implied for a single cutter.

The instantaneous depth of cut d, which appears in Eq. (4), is most easily interpreted by restricting
consideration to an idealized drag bit consisting of n identical radial blades regularly spaced by an angle equal
to 2p=n (see Fig. 3). Each blade is characterized by a sub-vertical cutting surface and a chamfer of constant
width ‘n orthogonal to the cutting face. When such a bit is drilling rock, and in the absence of any lateral
motion, the depth of cut per blade dn (i.e., the thickness of the rock ridge in front of the blade) is constant
along the blade and identical for each blade. Furthermore, dn is related to the vertical position of the bit U

according to

dnðtÞ ¼ UðtÞ �Uðt� tnÞ, (6)
Fig. 3. Section of the bottom-hole profile located between two successive blades of a drill bit, which is characterised by n identical blades

symmetrically distributed around the axis of revolution. The thickness of each blade ‘n corresponds to the length of wearflat per cutter.
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where tn ðtÞ is the time required for the bit to rotate by an angle 2p=n to its current position at time t, as
schematically illustrated in Fig. 3. The delay tnðtÞ is solution of

FðtÞ � Fðt� tnÞ ¼ 2p=n. (7)

The equivalent wearflat length for the bit is ‘ ¼ n‘n and the combined depth of cut of the bit is simply d ¼ ndn

or

d ¼ n½UðtÞ �Uðt� tnÞ�. (8)

The depth of cut d appearing in Eq. (4) also represents the depth of cut per revolution of the bit, i.e.,
d ¼ 2pV=O, under steady conditions or when it is averaged over several revolutions.

The additional relationship needed to resolve the depth of cut d corresponding to a prescribed W depends
on the direction of the instantaneous axial bit velocity, which impacts on W f as discussed below. Irrespective
of the magnitude of W f and Tf , however, a constraint on the bit response can be deduced by combining
Eqs. (3)–(5) to yield

2T

a2
¼ ð1� bÞ�d þ mg

W

a
, (9)

with

b ¼ mgz. (10)

The linear constraint given in Eq. (9) applies as long as the bit is drilling.
The interaction between the bit and the rock can be classified into the following four modes:
�
 Cutting (O40; d40). Consider first the ‘‘normal case’’ when V40. The cutting and frictional components
of W and T are explicitly given by Eq. (4) and

W f ¼ a‘s; Tf ¼
a2

2
gm‘s, (11)

where the average contact pressure s is assumed to be constant when V40 and O40 and the bit is cutting
(d40). Thus drilling occurs in the normal case, only if W4W f and T4Tf . Consider next the case Vo0
and O40 when the bit is moving upwards. We assume a complete loss of contact between the wearflat and
the rock, so that the frictional components W f and Tf vanish. Hence W ¼W c and T ¼ Tc, as long as
d40. When V ¼ 0 , W f ¼W o �W c.

�
 Sticking (O ¼ 0; d40). During the stick phase the bit remains immobile. In this case, d represents the

‘‘step’’ in front of the blades that dictates the minimum forces (W ; T) to be applied in order to exit the stick
mode. During this phase, V ¼ 0, U ¼ UðtkÞ and F ¼ FðtkÞ with tk denoting the time at which the bit sticks.
We assume complete contact between the wearflat (or chamfer) and the rock during the sticking phase.

�
 Sliding (O40; d ¼ 0). In sliding mode, the rate of penetration V and the cutting components of the forces

(Tc;W c) vanish.

�
 Off-bottom (O40; do0). The bit is not in contact with the hole bottom and thus T ¼W ¼ 0. Such a

complete loss of contact between the bit and the rock takes place during bit bouncing.

2.3. Governing equations

The non-trivial bit response RðtÞ ¼ fW ðtÞ;V ðtÞ;TðtÞ;OðtÞg can, in principle, be determined from the surface
conditions and the bit–rock interface laws, together with the following torsional and axial equations of
motion:

I
d2F
dt2
þ CðF� FoÞ ¼ To � Tðt0F;

t
0UÞ,

M
d2U

dt2
¼W o �W ðt0F;

t
0UÞ, ð12Þ
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where Fo, To, and W o are the stationary quantities associated with the trivial solution, see Eqs. (15) and (18).
In view of the nature of the interaction laws discussed above, both T and W are actually functions of the
history of F (denoted by t

0F) and the history of U (denoted by t
0U). Indeed the cutting components of T and

W are proportional to the depth of cut d, a state variable that is defined by comparing the current bit position
UðtÞ to a previous position Uðt� tnÞ in accordance with Eq. (8), with the delay tn solution of Eq. (7). The
system of equations in Eq. (12) represent a retarded dynamical system [43]. Furthermore, this system is
characterized by a state-dependent delay [44], unlike similar systems that arise from the modeling of various
metal machining processes for which the delay can be assumed to be constant [27,29].

An additional complexity of the model arises from the discontinuous nature of the boundary conditions
during stick–slip. For the sake of simplicity, we assume that the frictional component of the torque is sufficient
to hinder any backward rotation of the bit. Therefore, the condition for the bit to stick at time tk is

dF
dt
¼ 0 at t ¼ tk. (13)

During the stick phase, rotation of the drill pipes continues at the surface, the torque applied by the drill pipes
upon the bottom hole assembly, T ¼ CðF� OotÞ, builds up until its magnitude is sufficient to overcome the
torque (Tc þ Tf ) necessary to cut the rock. Thus the bit slips at time tp, given by the solution of

CðOotp � FkÞ ¼
a2

2
ð�dk þ mg‘sÞ, (14)

where Fk ¼ FðtkÞ and dk ¼ dðtkÞ.

2.4. Steady-state solution

There is a steady-state (trivial) response of the bit, Ro ¼ fW o;V o;To; Oog, which is characterized by

W o ¼W s �Ho; O ¼ Oo; Fo ¼ Oo t� To=C, (15)

where W s is the submerged weight of the drill string. Steady-state drilling conditions represent particular
instances of the normal case (V40, O40). The delay tno is here constant and given by

tno ¼
2p

nOo

(16)

and thus the depth of cut is

do ¼
2pVo

Oo

. (17)

The penetration rate V o and torque-on-bit To are readily deduced from the bit–rock interaction laws given in
Eqs. (3) and (4), thus

V o ¼
ðW o �W f ÞOo

2paz�
; To ¼ Tf þ

aðW o �W f Þ

2z
if W o4W f . (18)

The bit is not drilling if W opW f , i.e., V o ¼ 0 and To ¼ a g mW o=2. Hence the steady-state solution is fully
defined by the bit–rock interface and the control parameters, as it is not affected by the inertia and stiffness of
the drilling system.

3. Scaling

We show now that the 13 physical parameters controlling the dynamical system can be reduced, by scaling,
to 6 dimensionless quantities. The dimensionless formulation hinges on introducing a time scale that reflects
the global response of the drilling structure and a length scale that embodies the interaction between the bit
and the rock. The time scale is proportional to the period of the first resonant mode of torsional oscillations
while the length scale is a characteristic depth of cut. These two scales echo the multiscale nature of this
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problem, namely that vibrations of a structure with characteristic length of order of 103 m are triggered by
cutting processes at the bit–rock interface that are characterized by depths of cut of order of 10�3 m.

3.1. Dimensionless formulation

To formulate the model in dimensionless form, we first need to introduce a time scale t� and a characteristic
length L� which are defined by

t� ¼

ffiffiffiffi
I

C

r
; L� ¼

2C

� a2
. (19)

While 2p t� is the period of the resonant torsional vibration of the discrete drilling system, L� represents the
depth of cut when drilling with a perfectly sharp bit (‘ ¼ 0) subjected to a torque that induces a twist of
1 radian in the drill string (typically, t��1 s and L��1mm). The scaled kinematical and dynamical quantities at
the bit, i.e. u, v, j, o, W, T, are then defined as

u ¼
U �Uo

L�
; v ¼

V t�

L�
; j ¼ F� Fo; o ¼ O t�; W ¼

W

z�aL�
; T ¼

T

C
, (20)

where Uo ¼ Vo t is the vertical bit position according to the trivial response. Thus, u and j represent
perturbations of the axial and angular positions of the bit with respect to the trivial motion. We also define the
dimensionless depth of cut d:

d ¼
d

L�
. (21)

All these quantities are function of the scaled time t:

t ¼
t

t�
. (22)

Note that v ¼ vo þ _u and o ¼ oo þ _j, with the dot denoting differentiation with respect to t and vo and oo

representing the trivial dimensionless rate of penetration and bit angular velocity, respectively.
The scaled bit response BðtÞ ¼ fW, v, T, og depends on two classes of parameters: on the one hand the

control parameters corresponding to the prescribed weight-on-bit and rotation speed

Wo ¼
W o

z �aL�
; oo ¼ Oot�, (23)

and on the other hand the model parameters, i.e., the number of blades n and the lumped parameters
characterizing the bit geometry, its wear state, and the drilling structure:

n; b ¼ mgz; l ¼
s‘
z�L�

; c ¼
z�aI

MC
. (24)

The typical range of variation of both control parameters is ½1; 10�. The bluntness number l and the bit–rock
interaction number b are of order 1. The system number c is the only large number of this problem as it is of
order 102–103; its largeness confirms that inertia of the bottom hole assembly cannot be neglected. Note that
the dimensionless formulation has reduced the number of parameters from 13 (M ; I ;C; �; m;s; z; a; g;
‘; n;W o;Oo) to 6 (n; l;b;c;Wo;oo).

3.2. Scaled mathematical model

The non-trivial response BðtÞ is governed by the conditions at the surface and at the bit–rock interface and
by the momentum balance equations (Eq. (12)), which can be written in dimensionless form as

€u ¼ cðWo �WÞ; €jþ j ¼To �T. (25)

Recall that both T and W are functionals of the history of j (denoted by t
0j) and u (denoted by t

0u).
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The bit–rock interaction laws are functions of the combined depth of cut d for the bit. We choose to express
d in terms of a perturbation d̂ from the depth of cut per revolution for the trivial motion, do ¼ 2pvo=oo

d ¼ do þ d̂. (26)

The perturbation d̂ is given by

d̂ ¼ nvot̂n þ nðu� ~uÞ, (27)

where ~uðtÞ ¼ uðt� tnÞ is the delayed motion, and t̂n ¼ tn � tno with tnðtÞ the actual delay and tno ¼ 2p=noo

the constant delay for the trivial response. The algebraic equation governing the delay perturbation t̂nðtÞ is
deduced from Eq. (7) and the above definitions to be

oot̂n þ j� ~j ¼ 0, (28)

with ~jðtÞ ¼ j t� tnð Þ.
The bit–rock interaction laws can be summarized as follows. If _j4� oo,

W�Wo ¼ d̂þWf � l, ð29Þ

T�To ¼ d̂þ bðWf � lÞ, ð30Þ

where

Wf ¼
l if _u4� vo;

0 if _uo� vo:

(
(31)

If _u ¼ �vo then 0oWf ol and Wf is deduced from the balance of linear momentum.
The bit stick at time tk when

_j ¼ �oo at t ¼ tk (32)

and then slips at time tp given by

tp ¼ tk þ ½jðtkÞ þTðtkÞ �To�=oo. (33)

It is interesting to note that the prescribed rotation speed oo of the drill string enters the governing
equations via the delay function tn tð Þ, as a consequence of the nature of the bit–rock interface.

The system of equations that has to be solved for BðtÞ is unusual, in view of the delayed nature of the
differential equations (with an a priori unknown delay) and their coupling through the variable d, as well as
the existence of two discontinuities (the loss of frictional contact and the stick phase). In the absence of
vibrations, the response BðtÞ is simply the trivial solution Bo ¼ fWo; vo, To, oog, with vo and To given by

vo ¼
oo

2p
ðWo � lÞ; To ¼Wo þ lðb� 1Þ, (34)

if cutting is taking place (Wo4l).
The numerical procedure used to solve the system of Eqs. (25)–(33) is discussed in Appendix C.
4. Self-excited vibrations

In this section, we demonstrate that the nonlinear dynamical system is prone to self-excited vibrations. First,
we conduct a linear stability analysis that indicates that the trivial motion is unstable. This analysis is carried
out on the assumption that c is large enough to permit approximating the state-dependent delay system as a
constant delay system for which the stability conditions are known. Next we summarize the results of
numerical simulations showing that the nonlinear system usually evolves towards a limit (or a quasi-limit)
cycle. In particular, the existence of a limit cycle with stick–slip oscillations appears to be associated with bo1.
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4.1. Linear stability analysis

As a prelude to the numerical simulations, we investigate the evolution of small perturbations to the trivial
solution in order to assess the self-excited nature of the system of equations. There are, however, hardly any
published results regarding the stability of state-dependent delay system that could guide our analysis.
Therefore, we first develop an argument based on the separation of time scales between the axial and torsional
vibrations to justify the transformation of the dynamical system into a simplified constant delay system, for
which the stability criterion is known. Furthermore, to avoid having to deal with discontinuities in the
boundary conditions, the stability analysis is conducted on the assumption that the disturbances are small
enough to ensure a permanent frictional contact between the bit and the rock (Wf ¼ l).

The linearized equations governing the evolution of the perturbations are deduced from Eqs. (25), (29) and
(30) to be

€u ¼ �nc �
vo

oo

j� �jð Þ þ u� �u

� �
, (35)

€jþ j ¼ �n �
vo

oo

j� �jð Þ þ u� �u

� �
, (36)

where �u ¼ uðt� tnoÞ and �j ¼ jðt� tnoÞ, thus corresponding to a constant delay (t̂n ¼ 0). Analysis of the
stability of the equilibrium points, where u is constant (implying u ¼ �u) and j ¼ 0, of the above two equations
hinges on the recognition that there is essentially a time separation between the axial and torsional dynamics in
view of the largeness of c. Indeed, the axial perturbations u evolve relative to a time scale, which is c1=2

smaller than the reference time scale for the torsional perturbations j, as can be noted by eliminating c from
Eq. (35) through the introduction of a stretched time t0 ¼ c1=2t.

One consequence of this temporal disconnection is that the term ðj� �jÞ in the axial equation, Eq. (35), can
be treated as fixed. Furthermore, the torsional perturbations are virtually non-existent in the time boundary
layer (in terms of t0) where the axial perturbations might possibly grow. Hence, the stability of the equilibrium
point u ¼ const. can be assessed from the uncoupled equation [45]

€uþ ncu� nc �u ¼ 0, (37)

where Eq. (37) has been written in terms of the original time t, and thus applies over t ¼ Oðc�1=2Þ.
The stability of the equilibrium point u ¼ 0 can be assessed from general results obtained for the second-

order delay differential equation [46,47]

d2

dx2
xðxÞ þ qxðxÞ þ rxðx� 1Þ ¼ 0. (38)

The trivial solution x ¼ 0 of Eq. (38) is stable provided that the parameters r and q are within regions bounded
by the linear segments

r ¼ 0; r ¼ ð�1Þk½q� ðk � 1Þ2p2�; k ¼ 1; 2; . . . (39)

as depicted in Fig. 4. Because q ¼ �r in the linearized delay equation governing the evolution of axial
perturbations, the trivial solution u ¼ 0 is in fact never asymptotically stable. However, u ¼ 0 can still be
stable in the Lyapunov sense (i.e., the solution neither diverges, nor converges) or unstable. The stability of the
equilibrium point u ¼ const. (equivalent to _u ¼ 0) is investigated in Appendix B, where it is shown that the
equilibrium point _u ¼ 0 is asymptotically stable when tnootnc, marginally stable when tno ¼ tnc and unstable
when tno4 tnc, with the critical delay tnc ¼ p=

ffiffiffiffiffiffiffiffiffi
2nc

p
.

If the equilibrium point _u ¼ 0 is stable, the right-hand side of Eq. (35) vanishes for large t0; with the
implication that Eq. (36) simplifies at t ¼ Oð1Þ as

€jþ j ¼ 0. (40)

This indicates that the torsional motion is stable if the axial motion is stable and thus suggests that axial
instability is a precursor of the torsional instability.
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Fig. 4. Complete stability charts in the parametric space, after Refs. [47,48].

Fig. 5. Phase diagram (n ¼ 6; c ¼ 50; b ¼ 0:3; oo ¼ 5; Wo ¼ 7; l ¼ 5).
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4.2. Limit cycles

Extensive numerical simulations confirm that the system naturally experiences self-excited vibrations, as any
perturbations to the trivial motion (even of numerical nature) cause the system to evolve towards one regime
of self-excited axial and torsional vibrations. For sets of parameters representative of field values, the solution
of the system evolves usually towards a periodic motion characterized either by a strict limit cycle (see Fig. 5)
or by a quasi-limit cycle that evolves very slowly compared to the characteristic time of the system. Different
regimes of vibrations such as stick–slip oscillations or bit bouncing are observed under different conditions.

In Fig. 6 is shown the evolution of o; v, W and d during four successive limit cycles for a typical case of
stick–slip vibrations. While the angular velocity o can be described as a quasi-monochromatic signal, with the
dominant frequency slightly smaller than the natural torsional frequency of the system, the power spectrum of
the axial variables is characterized by a larger spread of frequencies.

The periodic variation of the depth of cut, revealed by the polar plots of Fig. 7 showing the evolution of the
depth of cut with the angular bit position, implies the formation of a repetitive geometrical bottom hole
pattern. Indeed, the curves corresponding to successive limit cycles are quasi-identical, as they can virtually be
superimposed after correction for a phase shift. Fig. 7 actually reflects the history-dependent nature of the
system; the history of vibrations imprinted in the bottom-hole pattern encourages amplification of the self-
excited vibrations.
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Fig. 6. Evolution with time t of (a) o and n, and (b) T and W (n ¼ 6, c ¼ 50, b ¼ 0:3, oo ¼ 5, Wo ¼ 7, l ¼ 5).
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4.3. Stick– slip vibrations

For typical values of the control and model parameters, b appears to be the only parameter of the model
that can prohibit the occurrence of stick–slip oscillations, as all the other parameters only influence the time
required to reach a steady regime of stick–slip vibrations, once the system departs the trivial solution. In fact,
the threshold b ¼ 1 separates two regimes of vibrations: for bo1, the torsional oscillations grow until a limit
cycle characterized by stick slip oscillations is eventually reached, while for b41 torsional oscillations remain
bounded and the system reaches a limit cycle without stick–slip. This important result is illustrated in Fig. 8,
which shows the evolution of the magnitude of the torsional vibrations for b ¼ 0:3 and 1.3, following a
perturbation at t ¼ 0. The numerical simulations remain consistent, however, with the linear stability analysis,
which indicates that the system experiences self-excited vibrations irrespective of the value of b.

The critical role played by b on the existence of stick–slip vibrations can be explained by considering the
time scale separation of the axial and torsional dynamics. Since the axial dynamics evolves approximately

ffiffiffiffi
c

p
(typically Oð10Þ) faster than the torsional dynamics, only the slow variations of the fast axial variables affects
the angular motion. Thus, provided that c is large enough, the balance of angular momentum can be
simplified as

€jþ j ¼ ðb� 1Þhl�Wf ia þ
1

c
h €uia, (41)

with hia denoting an average over one axial limit cycle.
Moreover, the ‘‘fast’’ axial dynamics can be decoupled from the torsional dynamics by treating the delay as

a fixed parameter over one (fast) axial limit cycle [48]. In fact, it can be shown that h €uia ¼ 0 for a fixed delay
and that hl�Wf ia increases with tn considered as fixed during one axial periodic orbit [49]. In the slow
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Fig. 7. Pattern of depth of cut with angular position for two successive limit cycles (n ¼ 6, c ¼ 63, b ¼ 0:28, oo ¼ 4, Wo ¼ 8, l ¼ 0:76).
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Fig. 8. Different types of evolution of the torsional vibrations for (a) b ¼ 0:3 and (b) b ¼ 1:3 (n ¼ 6, c ¼ 50, Wo ¼ 7, l ¼ 5, oo ¼ 5).
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dynamics, tn is in a first approximation inversely proportional to o. Hence, the quantity hl�Wf ia decreases
with respect to the angular bit velocity o. Depending on the sign of ðb� 1Þ, this term will act as positive or as
negative damping. If b41, the term ðb� 1Þhl�Wf ia reduces the amplitude of the torsional vibrations;
however, if bo1, this term amplifies the oscillations until the eventual appearance of a stick–slip limit cycle.

In order to evaluate the influence of the different parameters on the occurrence of the stick–slip vibrations, it
is convenient to introduce a measure of how fast the amplitude of the self-excited vibrations grows with time.
This measure is taken to be tsk, which is defined as the time when the bit first sticks. The value of tsk computed
for a set of parameters is not absolute, however, as it depends on the magnitude and the nature of the
perturbation. Hence, the curves in Fig. 9, which illustrates the influence on tsk of the control parameters Wo

and oo and of the system parameters b, l and c, have to be interpreted in a relative sense as giving a trend of
the balance between self-excitation and damping. Consistent with the explanation that cutting is at the root of
the self-excited vibrations and that the frictional contact is damping these vibrations, we can observe from
Fig. 9 that tsk increases with l but decreases with Wo. Indeed, an increase of the weight-on-bit for a constant
state of bluntness of the cutters brings more energy in the pure cutting process, magnifying the self-excited
vibrations. The reverse tendency takes place with increasing l (proportional to the wearflat length) under
constant weight-on-bit. An increase of oo also tends to mitigate the stick–slip vibrations.

As long as bo1, tsk is increasing with b, as shown in Fig. 9e, this indicates the existence of a vertical
asymptote at b ¼ 1. An augmentation of b for an equivalent level of self-excitation d causes a rise of the
frictional contribution of the torque, which stabilizes the torsional vibrations.

In Fig. 9b the variation of tsk with oo is shown, and these results indicate the existence of two windows for
which the bit does not undergo stick–slip vibrations. The left grey window represents the so-called anti-
resonance zone, whose existence and characteristics depend on the other parameters of the system. The anti-
resonance regime is characterized by a limit cycle described by low amplitudes of vibrations of o around oo as
depicted in Fig. 10, even though the transient motion passes through stick–slip phases. A power spectrum
analysis reveals also a distinct series of harmonics for each of the variables but the dominant frequency of o; n
and d does not correspond anymore to the natural torsional frequency of the drill string (¼ 1=2p). All these
particular cases will be referred to as the anti-resonant response of the system. The second grey window
located on the right corresponds to what we describe as a quasi-limit cycle, which is related to an extremely
τ sk τ sk τ sk

τ skτ sk

ψ

βλ

Fig. 9. Variation of tsk with (a)Wo, (b) oo, (c) c, (d) l and (e) b ( n ¼ 6, c ¼ 63:1, oo ¼ 4,Wo ¼ 8, b ¼ 0:276, l ¼ 7:8 unless parameter is

varied).
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Fig. 10. Evolution with time t of: (a) d and W and (b) o and n (n ¼ 6, c ¼ 63:1, b ¼ 0:276, oo ¼ 1, Wo ¼ 8, l ¼ 4:56).
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slow rate of growth of the amplitudes of vibrations. So there is a range of values of oo (larger than those
corresponding to the anti-resonance regime), for which an increase in the imposed angular velocity leads to a
reduction of the occurrences of stick–slip vibrations.

Finally, some range of c corresponds to the anti-resonance regime, see Fig. 9c. For values of c larger than
those associated to the anti-resonance, the reduction of tsk with c indicates that the rate of growth of the
torsional vibrations augments with drilling depth due to increasing compliance of the drill pipe system.

5. Mean response of the system

In this section, we focus on the mean response of the system, by averaging over a limit cycle in torsion.
A parameter k (0pko1) is introduced to quantify the intermittent loss of frictional contact caused by axial
vibrations. An increase of the angular velocity oo and a decrease of the weight-on-bit Wo is shown to increase
on average the relative duration of contact at the wearflat/rock interface, until permanent contact is achieved
(corresponding to k ¼ 0). In particular, we demonstrate that the average torque-on-bit hTi decreases with
increasing oo, for bo1. This result suggests that the velocity weakening interface law generally assumed to be
an intrinsic property of the bit rock interaction is actually a consequence rather than a cause of the self-excited
vibrations. We also discuss the conditions leading to bit bouncing.

5.1. Averaging over a limit cycle in torsion

The mean response of the system, hBi, can simply be obtained by averaging quantities over a limit cycle in
torsion (with the symbol h:i used to denote such an average). The non-trivial components of hBi are the mean
penetration rate hvi ¼ h _ui þ no (or equivalently hdi since hvi ¼ oohdi=2p) and the mean torque hTi, as hWi ¼
Wo and hoi ¼ oo necessarily. Thus, the departure of hvi (or hdi) and hTi from the trivial solution no (or do)
and To is a measure of the effects of vibrations on the bit response. In fact, it can already be concluded from
the existence of a limit cycle, together with the discontinuous nature of the contact condition, Eq. (31), that
hdiXdo and hWf ipl. The increase of the penetration rate with respect to no is thus associated with an
intermittent loss of frictional contact caused by axial vibrations. It is convenient to use the parameter k
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defined as

k ¼ 1� hWf i=l (42)

to quantify the level of intermittent loss of frictional contact at the bit–rock interface. In principle, k can vary
between 0 (permanent contact between the chamfers and the rock) to 1 (absence of any frictional contact
during drilling). However, as shown below, this upper bound cannot be realistically attained as bit bouncing
takes place for kkoko1.

The drilling efficiency Z is defined as the ratio between the energy devoted to the pure cutting process and
the total energy provided to the bit, averaged over a limit cycle; in other words Z ¼ hTci=hTi. The efficiency is
related to k according to

Z ¼
Wo � lð1� kÞ

Wo � lð1� kÞð1� bÞ
(43)

and varies therefore between Zo ¼ do=To for k ¼ 0 to 1 for k ¼ 1.
Considering that the system reaches a periodic motion or a quasi-limit cycle (extremely low evolution of the

limit cycle compared to the characteristic time of oscillations), h €ui ¼ h €ji ¼ 0, we can readily deduce that

Wo ¼ hdi þ ð1� kÞl; To ¼ hTi þ hji. (44)

Hence, using Eqs. (21), (30), (25) and (42), we can write hdi; hTi and hji in terms of k and the other
parameters of the system as

hdi ¼ do þ kl; hTi ¼ hdi þ ð1� kÞbl; hji ¼ �ð1� bÞkl. (45)

Deviation of the mean bit response from the trivial solution is thus embodied in the single parameter k. The
meaning of Eq. (45) can be explained as follows. The first equation in Eq. (45) indicates that increased
intermittent loss of frictional contact, as measured by k, yields larger rate of penetration and improved
efficiency, as a consequence of an energy transfer (kl) from the frictional contact to the pure cutting process.
The second equation in Eq. (45) simply expresses that the external power hTi is balanced by the energy
devoted to the cutting process, hdi, and the energy dissipated into frictional contact, ð1� kÞbl. Finally, the
third equation in Eq. (45) shows that the mean elastic energy hji stored in the drill pipes is larger or less than
its trivial value (hji ¼ 0) depending on whether b is smaller or larger than 1.

5.2. Influence of parameters on k

Here, we focus on the case bo1, which reflects typical bit geometries through g. An exhaustive analysis of
the influence of all the parameters indicate that k is virtually insensitive to any variations of b and that it
depends on Wo and l only via the ratio W0

o ¼Wo=l, i.e.,

k ¼ kðW0
o;oo;c; nÞ. (46)

Typical variation of k with each parameter of the reduced set is depicted in Fig. 11, which shows that k
increases with c and W0

o but decreases with oo. These results imply that stronger axial vibrations are
associated with increasing depth of drilling, larger weight-on-bit, sharper bit, and reduced rotational speed.
The dependence of k onWo and l only via the ratioWo=l reflects that the level of vibrations is controlled by a
balance between the energy expended in cutting (self-excitation), and the energy dissipated by frictional
contact (damping).

The mean torque hTi can also be expressed in terms of its trivial value To and k. Combining (44) and (45),
we obtain

hTi ¼To þ ð1� bÞkl. (47)

Referring to the variation of k with oo shown in Fig. 11, we conclude from Eq. (47) that the mean torque hTi
decreases with increasing angular velocity oo if bo1 (the typical case), while it increases with oo if b41. In
both cases, hTi converges with larger oo towardsTo the torque-on-bit in the absence of any vibrations. These
results therefore imply that the velocity weakening interface law generally assumed to be an intrinsic property
of the bit rock interaction is actually a consequence rather than a cause of the self-excited vibrations.
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The variation of hTi with oo is intimately related the intermittent losses of frictional contact occurring at the
wearflat/rock interface.

5.3. E-S diagram

A useful tool for assessing the state of the mean bit response is the E-S diagram [25], where the specific
energy E is plotted versus the drilling strength S. These two quantities are, respectively, defined as

E ¼
E

�
¼
hTi

d
; S ¼

S

z�
¼
hWi

d
. (48)

The rationale for representing the bit response in the E-S diagram derives from the linear constraint, Eq. (9),
between torque-on-bit T , weight-on-bit W , and depth of cut d. In dimensionless form, this relation can be
written as

hTi ¼ ð1� bÞhdi þ bhWi, (49)

which can equivalently be expressed as

E ¼ ð1� bÞ þ bS with E; SX1. (50)

The above equation identifies the friction line of slope b passing through the cutting point (E ¼ S ¼ 1). The
cutting point corresponds to a maximum efficiency Z ¼ 1, when all the energy provided to the bit is converted
into cutting of the rock. Only points on the friction line on the right and above the cutting point are admissible
as they correspond to efficiency Z ¼ E�1 less than unity.

Results of numerical simulations carried out for two particular cases b41 and bo1 with several angular
velocities are shown on the E-S diagram in Fig. 12. The point representative of the bit response moves
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Fig. 12. E�S diagram for b ¼ 0:276 and b ¼ 1:5 (Wo ¼ 8, c ¼ 100, l ¼ 0:9, n ¼ 6). The white squares correspond to the trivial

solutions.
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upwards along the friction line with increasing angular velocity, meaning that Z decreases with oo.
Furthermore, the points converge towards the point representative of the trivial solution, i.e., the state of
minimum efficiency Zo, which occurs in the absence of vibrations.

5.4. Bit bouncing and drilling efficiency

From numerical experiments there is evidence of the existence of an upper bound W0
okðoo;c; nÞ for W0

o

beyond which the axial vibrations are so important that it causes the bit to bounce. Because k increase with
W0

o, these results imply not only the existence of an upper bound kkðoo;c; nÞ below which bit bouncing is
prevented, but also an upper bound hdik ¼Wo � lkkðoo;c; nÞ to the depth of cut (or equivalently to the rate
of penetration). With increasing axial vibrations, hdi can therefore increases from the trivial value do ¼

Wo � l to a maximum hdik, which is however always less than the depth of cut per revolution dmax ¼Wo that
can be achieved with an ideally sharp bit. Fig. 13 illustrates these results for different oo and c. Both control
parameters ðoo;WoÞ and their influences are presented here. Moreover, via the ratio W0

o, sharp bit or large
weight-on-bit increase the susceptibility to bit bouncing. By increasing oo, drilling becomes more stable
whatever the set ðWo; lÞ chosen. However, this increase of stability is accompanied with a decrease of the
drilling efficiency since the points migrate towards the trivial rate of penetration (k ’ 0). As depicted in
Fig. 13, the risk of bit bouncing increases with c; for example when drilling deeper as the system of pipes
becomes more compliant. On the one hand, reducing c stabilizes the bit motion, but on the other hand it
decreases the drilling efficiency. Fig. 14 (a) displays the enlargement of the region of bit bouncing with the
parameter c in the space of control parameters (Wo, oo), while Fig. 14 (b) shows the corresponding variation
of the drilling efficiency Z for c ¼ 100.

6. Conclusions

In this paper, we have proposed a novel model to investigate the self-excited vibrations of a drilling system.
This model differs from other published approaches in two significant ways. First, we have considered both
the axial and torsional vibrations of the bit, as well as the coupling between the two vibration modes through
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bit–rock interaction laws that account for both cutting and frictional contact. Second, we have included rate-
independent bit–rock interaction laws, which are consistent with laboratory results from single cutter
experiments.

The critical elements that have been incorporated in this model are: (i) the axial inertia of the bottom hole
assembly; (ii) the particular nature of the boundary conditions at the bit–rock interface that are associated
with the cutting process; and (iii) the potential loss of contact across the chamfer or wearflat. All parameters
introduced in the model are measurable quantities. The resulting model is an unusual state-dependent delay
dynamical system, with discontinuous boundary conditions.

A linear stability analysis confirms that the trivial motion of the bit is unstable and numerical simulations
show that any perturbation triggers self-excited vibrations of the system. The delayed and coupled nature of
the cutting process is responsible for the self-excited nature of the induced vibrations. Moreover, the loss of
contact that accompanies any upward motion of the bit routes most of the energy from the axial into the
torsional mode of vibrations and is essential to avoid bit bouncing (do0).
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The features of the induced torsional and axial oscillations are coherent with field measurements and
observations. A parametric analysis in fact indicates that, in the space of dimensionless parameters, the region
associated to a high susceptibility to stick–slip corresponds well to typical field quantities.

The number b ¼ mgz appears as a dominant parameter of the problem. It strongly affects the propensity of
the system to stick–slip. According to numerical results, the condition bX1 appears to be sufficient to preclude
the appearance of stick–slip vibrations at least in a range of parameters that are typical of field cases. On the
other hand, bo1 is a necessary but not sufficient condition for instability to arise and stick–slip to occur.

Finally, results of numerical simulations indicate that apparent rate effects are inherent to the model. An
increase of the imposed angular velocity oo results in a decrease of the average depth of cut. The state of
minimum efficiency (corresponding to the trivial depth of cut) occurs in the absence of vibrations, which is
reached asymptotically when oo is large, i.e., when the period of the resonant torsional vibration becomes
large compared to the time taken by one revolution of the bit. Since the average weight-on-bit is necessarily
equal to Wo, the variation of the average torque hTi with oo is controlled by the magnitude of b; namely, hTi
decreases with oo if bo1, but increases with oo if b41. In fact, one of the most important results of this
research is that the apparent rate effect is an outcome rather than an input to the model.

One of the main limitations of this model is the reduction of the drillstring to a two degrees of freedom
system. Work is currently underway to model the drillstring using the finite element method, so as to capture
more modes of vibrations [50]. Preliminary numerical simulations show that there are many cases where the
results obtained with the finite element model are consistent with those predicted by the low-order model, but
there are also a few situations where stick–slip occurs at frequencies higher than the first torsional mode.
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Economics) and Prof. R. Sepulchre (University of Liège) in the formulation of the linear stability analysis.
Finally the authors would like to thank one of the reviewers for his careful critique of the original manuscript
and for valuable comments which have enabled us to improve the paper.
Appendix A

In this appendix, we present an analysis of the results of a series of full-scale laboratory drilling experiments,
carried out in a Mancos shale with a step-type 8.5 in diameter PDC bit for various combinations of imposed
Oo and W o (W o ¼ 40; 80; 120 kN and Oo varying between 50 and 900 rev/min) [11]. These data are of
particular interest because they provide experimental evidence of the bit–rock interaction laws summarized in
Section 2.2, but also because they clearly display a decrease of the mean torque with the imposed angular
velocity.

The bit–rock interaction is characterized by a linear constraint between the specific energy E ¼ 2T=a2d and
the drilling strength S ¼W=ad [25]:

E ¼ Eo þ mgS, (A.1)

where Eo ¼ ð1� bÞ �. In fact, Eq. (A.1) is the dimensional equivalent of Eq. (50). In the E-S diagram (see
Fig. A.1(a)), the point representative of the bit response lies on the friction line. Its location along the line is
related to the drilling efficiency Z ¼ �=E, or equivalently to the fraction of the weight-on-bit transmitted by the
contact area between the bit and the rock. If the bit is sharp, the state point is located at the cutting point
(E ¼ �, S ¼ z�), otherwise the point migrates upwards along the friction line with decreasing efficiency. It can
also readily be established that a decrease of efficiency is accompanied by a decrease of the average torque
under constant weight-on-bit if bo1 (and by an increase of torque if b41).
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The overall response of the laboratory tests is summarized in the E-S diagram shown in Fig. A.1(b). Clearly,
all the experimental data lay along the same line regardless of the angular velocity. Therefore, neither the
intrinsic specific energy � nor the apparent friction coefficient mg between the bit and the rock varies with the
angular velocity (� ’ 230 MPa, mg ’ 0:48). However, the dispersion along the friction line is large; the points
representative of the bit response move upwards along the friction line with increasing angular velocity, under
constant weight-on-bit. Furthermore, as can be seen in Fig. A.2, the mean torque decreases with increasing Oo

under constant W o, consistent with a value of bo1 (b ’ 0:35).
The diminishing efficiency Z with larger Oo under constant W o reflects an increase of the contact forces at

the expense of the forces mobilized by the cutting process. In principle, a reduction of Z could be associated
with either an increase of the overall contact area or with an increase of the mean contact stress acting across
the wearflats with Oo. However, change of the contact area between the bit and the rock due either to bit wear
and/or inadequate bottom-hole cleaning with increasing Oo is unlikely under these laboratory conditions.
Indeed, the short drilled length and the non-abrasive nature of the Mancos shale rule out a possible wear of
the bit over the duration of these tests. Also, cleaning problems would result in an evolving contact
distribution between the bit and the hole-bottom. However, the corresponding change in the bit geometry
number g (as reflected by the slope of the friction line) is not observed in the data set. More importantly, any
Fig. A.1. (a) Conceptual sketch of the E-S diagram, and (b) E-S diagram, according to published experimental data [11] with

mW ¼ 40 kN, &W ¼ 80 kN, � W ¼ 120kN.

Fig. A.2. Evolution of the mean torque hTi with the angular velocity Oo under constant weight-on-bit (W ¼ 120kN), according to

published experimental data [11].
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variation of the torque due to inadequate removal of debris flow would happen over a time scale equivalent to
several rotations, too large to be compatible with the time scale of the stick–slip oscillations.

The only remaining explanation is an increase of the mean contact stress s with Oo. Assuming permanent
contact between the bit flat and the rock, s would have to increase with the relative velocity between the
wearflat and the rock. Although such a law cannot be ruled out a priori, no significant effect of the cutting
velocity on the forces has been reported in the literature. However, the mean contact stress could increase with
Oo if axial vibrations responsible for an intermittent loss of contact between the bit and the rock progressively
decrease in intensity with Oo. Such a result is actually predicted by the model discussed in the body of this
paper.

Interpretation of the laboratory drilling data [11] within the framework of the bit–rock interaction laws can
be summarized as follows: (i) the bit response is consistent with a bit–rock interaction model which takes into
account both the cutting and frictional processes mobilized at the bit–rock interface [25]; (ii) the rate effects are
real but they are not a constitutive property of the bit–rock interface, in the sense that they do not affect the
parameters of the model (�, z, m, g); (iii) the rate effects are associated with an increase of the mean contact
stress transmitted at the flat–rock interface with Oo.

Appendix B

In this appendix, we investigate the stability of the equilibrium point u ¼ Constant (equivalent to u ¼ �u) of
the delay differential equation:

€uþ ncu� nc �u ¼ 0 (B.1)

governing the axial perturbation u. Consider the characteristic equation of Eq. (B.1)

PðsÞ ¼ s2 þ ncð1� e�stn Þ. (B.2)

The location of the roots of PðsÞ in the complex plane will determine the stability of _u ¼ 0. Because one root is
always located at the origin, we study instead the modified characteristic function

QðsÞ:¼
PðsÞ

s
¼ sþ

nc
s
ð1� e�stnÞ. (B.3)

The equilibrium point _u ¼ 0 is asymptotically stable if and only if all the roots satisfying QðsÞ ¼ 0 are
located on the left of the imaginary axis of the complex plane s. When tno ¼ 0, one root is located at the origin,
and the solution _u ¼ 0 is thus stable in the Lyapunov sense.

When the equation becomes retarded (tno40), there exists an infinite number of roots. From Eq. (B.3) and
because jð1� e�stn Þjo2 when Refsg40 and tno40, any roots with positive real part must lie within the half-
circle centered on the origin of radius

ffiffiffiffiffiffiffiffiffi
2nc

p
ðjsjo

ffiffiffiffiffiffiffiffiffi
2nc

p
Þ. Let us choose tno sufficiently small such that

1� e�stno � stno for any s satisfying jsjo
ffiffiffiffiffiffiffiffiffi
2nc

p
. The only root inside this circle is

so ¼ �nctno. (B.4)

Therefore, the root located at the origin for zero delay moves left for small tno:We can conclude that there is
no root with positive real part for tno51 and that the equilibrium point _u ¼ 0 is asymptotically stable.

Next, let us study the root locus sðtnoÞ given by the implicit equation

s2 þ ncð1� e�stnoÞ ¼ 0. (B.5)

Although the solution _u ¼ 0 is asymptotically stable for small value of the delay, a bifurcation will occur if one
root traverses the imaginary axis from left to right for larger tno. Let us compute the values of s ¼ iōk; tno;k

such that

�ō2
k þ ncð1� e�iōktno;k Þ ¼ 0. (B.6)

The non-trivial solutions of Eq. (B.6) are given by

ōk ¼ �
ffiffiffiffiffiffiffiffiffi
2nc

p
when tno;k ¼

ð2k þ 1Þpffiffiffiffiffiffiffiffiffi
2nc

p . (B.7)



ARTICLE IN PRESS
T. Richard et al. / Journal of Sound and Vibration 305 (2007) 432–456454
Moreover, the direction of travel of the roots with tno can be deduced from the derivative ds=dtno on the root
locus PðsÞ ¼ 0, which can be deduced from

dPðsÞ

dtno

¼
qP

qs

ds

dtno

þ
qP

qtno

¼ 0 (B.8)

and therefore,

ds

dtno

����
P¼0

¼ �
ncse�stn

2sþ nctne�stn
. (B.9)

By looking at the real part of Eq. (B.9) at the crossing points s ¼ �i
ffiffiffiffiffiffiffiffiffi
2nc

p
, for tno ¼ ð2k þ 1Þp=

ffiffiffiffiffiffiffiffiffi
2nc

p
, we

obtain a strictly positive quantity

Re
ds

dtno

����
PðsÞ¼0

( )
¼

8nc

16þ ð2k þ 1Þ2p2
40. (B.10)

The two complex conjugate roots will pass from the left half-plane to the right half-plane at the first crossing
tno;o ¼ p=

ffiffiffiffiffiffiffiffiffi
2nc

p
and will remain in the right half-plane. We can thus conclude that when tnoop=

ffiffiffiffiffiffiffiffiffi
2nc

p
, the

equilibrium point _u ¼ 0 and uðtÞ � uðt� tnoÞ ¼ 0 is asymptotically stable, marginally stable when tno ¼

p=
ffiffiffiffiffiffiffiffiffi
2nc

p
and unstable when tno4p=

ffiffiffiffiffiffiffiffiffi
2nc

p
.

Appendix C

In this appendix the numerical procedure used to solve the nonlinear system described by Eqs. (25)–(33) is
given. First, the two second-order differential equations (Eq. (25)) are reduced to four first-order differential
equations that are solved by using a simple Euler-forward finite difference technique. Although other
algorithms have been implemented (such as second and fourth-order Runge–Kutta method), the Euler
algorithm was preferred because it is numerically more efficient at comparable level of accuracy for this class
of problems.

A critical element of the procedure is the calculation of the delay perturbation t̂nðtÞ. In order to solve Eq.
(28) for t̂nðtÞ, it is necessary to keep the time history of the bit angular position over the last angular section of
angle 2p=n covered by the bit prior to time t. Also the time history of the bit axial position has to be saved to
compute the depth of cut at time t: Finally, the bit axial velocity at the previous time step t� Dt (Dt being the
time increment) is needed to assess the possible loss of contact at time t.

The solution is advanced from time t to the next time step tþ Dt as follows:
1.
 The new values of u, _u, j, _j at time tþ Dt are computed from

_uðtþ DtÞ ¼ _uðtÞ þ c Wo �WðtÞ½ �Dt,

uðtþ DtÞ ¼ uðtÞ þ _uðtþ DtÞDt,

_jðtþ DtÞ ¼ _jðtÞ þ To �TðtÞ½ �Dt� jðtÞDt,

jðtþ DtÞ ¼ jðtÞ þ _jðtþ DtÞDt. ðC:1Þ
2.
 The delay perturbation t̂n tð Þ is determined from Eq. (28) by interpolating between two discrete values of the
angular motion history.
3.
 The depth of cut is then computed from Eqs. (26) and (27); ~uðtÞ ¼ uðt� tnÞ is interpolated between two
discrete values of the axial motion history. If bit bouncing occurs (i.e. do0) the program is interrupted.
4.
 The forces (T; W) are updated according to Eqs. (29)–(31); in particular,Wf is set to zero if loss of contact
occurs, i.e., _uðtÞo0.
5.
 The stick condition given in Eq. (32) is checked. If it is fulfilled, the angular position when the bit exits the
stick phase and starts to slip is computed using Eq. (33) and the time is updated by the duration of the stick
phase.
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The explicit nature of the finite difference code does not guarantee stability. Numerical simulations indicate
that the rapid variation of the depth of cut imposes a relatively small time step (Dt�10�5–10�4) to avoid the

occurrence of numerical instability.
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